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Abstract. In this paper, we present a kernel trick embedded Gaussian
Mixture Model (GMM), called kernel GMM. The basic idea is to em-
bed kernel trick into EM algorithm and deduce a parameter estimation
algorithm for GMM in feature space. Kernel GMM could be viewed as
a Bayesian Kernel Method. Compared with most classical kernel meth-
ods, the proposed method can solve problems in probabilistic framework.
Moreover, it can tackle nonlinear problems better than the traditional
GMM. To avoid great computational cost problem existing in most ker-
nel methods upon large scale data set, we also employ a Monte Carlo
sampling technique to speed up kernel GMM so that it is more practical
and efficient. Experimental results on synthetic and real-world data set
demonstrate that the proposed approach has satisfing performance.

1 Introduction

Kernel trick is an efficient method for nonlinear data analysis early used by
Support Vector Machine (SVM) [18]. It has been pointed out that kernel trick
could be used to develop nonlinear generalization of any algorithm that could
be cast in the term of dot products. In recent years, kernel trick has been suc-
cessfully introduced into various machine learning algorithms, such as Kernel
Principal Component Analysis (Kernel PCA) [14[15], Kernel Fisher Discrim-
inant (KFD) [I1], Kernel Independent Component Analysis (Kernel ICA) [7]
and so on.

However, in many cases, we are required to obtain risk minimization result
and incorporate prior knowledge, which could be easily provided within Bayesian
probabilistic framework. This makes the emerging of combining kernel trick and
Bayesian method, which is called Bayesian Kernel Method [I6]. As Bayesian
Kernel Method is in probabilistic framework, it can realize Bayesian optimal
decision and estimate confidence or reliability easily with probabilistic criteria
such as Mazimum-A-Posterior [5] and so on.

Recently some researches have been done in this field. Kwok combined the
evidence framework with SVM [I0], Gestel et al. [§] incorporated Bayesian frame-
work with SVM and KFD. These two work are both to apply Bayesian frame-
work to known kernel method. On the other hand, some researchers proposed
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new Bayesian methods with kernel trick embedded, among which one of the
most influential work is the Relevance Vector Machine (RVM) proposed by Tip-
ping [17].

This paper also addresses the problem of Bayesian Kernel Method. The pro-
posed method is that we embed kernel trick into Expectation-Maximization
(EM) algorithm [3], and deduce a new parameter estimation algorithm for Gaus-
sian Mixture Model (GMM) in the feature space. The entire model is called
kernel Gaussian Mixture Model (kGMM).

The rest of this paper is organized as follows. Section 2 reviews some back-
ground knowledge, and Section 3 describes the kernel Gaussian Mixture Model
and the corresponding parameter estimation algorithm. Experiments and results
are presented in Section 4. Conclusions are drawn in the final section.

2 Preliminaries

In this section, we review some background knowledge including the kernel trick,
GMM based on EM algorithm and Bayesian Kernel Method.

2.1 Kernel Trick

Mercer kernel trick was early applied by SVM. The idea is that we can implicitly
map input data into a high dimension feature space via a nonlinear function:

b: X - H

x> ¢(x) 1)

And a similarity measure is defined from the dot product in space H as follows:

k(@,2") = (¢(x) - $(a')) (2)

where the kernel function k should satisfy Mercer’s condition [18]. Then it allows
us to deal with learning algorithms using linear algebra and analytic geometry.

Generally speaking, on the one hand kernel trick could deal with data in the
high-dimensional dot product space H, which is named feature space by a map
associated with k. On the other hand, it avoids expensive computation cost in
feature space by employing the kernel function k instead of directly computing
dot product in H.

Being an elegant way for nonlinear analysis, kernel trick has been used in
many other algorithms such as Kernel Fisher Discriminant [I1], Kernel PCA [14]
15], Kernel ICA [7] and so on.

2.2 GMM Based on EM Algorithm

GMM is a kind of mixture density models, which assumes that each component
of the probabilistic model is a Gaussian density. That is to say:
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pal©) =3 aiGilalfy) 3)

where € R? is a random variable, parameters @ = (al, s ap; O, ~~0M)

satisfy Zi\il a; = 1, a; > 0 and Gy(x]0;) is a Gaussian probability density
function:

1 1 T y—1
Gl($|91)—WWexp{—2($—m) 2 (x—m)} (4)
where 0; = (u, X).

GMM could be viewed as a generative model [12] or a latent variable model [6]
that assumes data set X = {xz}fvzl are generated by M Gaussian components,
and introduces the latent variables item Z = {2;} | whose value indicates which
component generates the data. That is to say, we assume that if sample z; is
generated by the I** component and then z; = [. Then the parameters of GMM
could be estimated by the EM algorithm [2].

EM algorithm for GMM is an iterative procedure, which estimates the new
parameters in terms of the old parameters as the following updating formulas:

1 N _
of) = =D pllle;, 607)

() _ Sy wip(l]zi, ©47Y)
S S T L))

»® — SN (@ — ) (@i — D) p(l]zs, O
l S, plifw, ©4-D)

where [ represents the [** Gaussian component, and

(t—1) (t—1)
- @ G(zil6 )
p(llwi,Q(t 1)) — Ml = l N l=1,--- M (6)
Zj:l Q; G($i|9j )

et-1 = (agt_l), e ,ag\f[_l); 9?_1), e ,95\71)) are parameters of the (t — 1)t"
iteration and @) = (agt),~~ ,ag\?;é)gt),~~ ,Gg\?) are parameters of the (¢)*?
iteration.

GMM has been successfully applied in many fields, such as parametric clus-
tering, density estimation and so on. However, for instance, it can’t give a simple
but satisfied clustering result on data set with complex structure [I3] as shown
in Figure[ll One alternative way is to perform GMM based clustering in another
space instead of in original data space.



162 J. Wang, J. Lee, and C. Zhang

x %
&= P
T 04 ok R
X %”‘&' oix XEREX M i{g‘@‘ soex §§§‘<§x sz
. 2;)(’( X X b ? “ fg%‘? 4 S - g Kg
R L %:‘ 02 ]2 %&fx
2 x J", A .-m’ . x‘x ,j&; x ey
@ e
1 3 M ol i
X 5o 7, X
X so x %
e 3 oa. ,“ x*ﬁ M chf e
¥ T g e xop
¥ x x wE x x
Sk e [ (T
X K XX % E EOR VN "
‘lx‘xxx‘x;’ﬁ‘x‘vx 0.4 * Rk %fx’?é;" -
o5 5 x 5
05 0 05 05 0 05
(a) (b) (c)

Fig. 1. Data set of two concentric circles with 1,000 samples, points marked by ‘x’
belong to one cluster and marked by ‘-’ belong to the other. (a) is the partition result
by traditional GMM, (b) is the result achieved by kGMM using polynomial kernel of
degree 2; (c) shows the probability that each point belongs to the outer circle. The
whiter the point is, the higher the probability is.

2.3 Bayesian Kernel Method

Bayesian Kernel Method could be viewed as a combination of Bayesian method
and Kernel method. It inherits merits from both these two methods. It could
tackle problems nonlinearly like kernel method, and it obtains estimation results
within a probabilistic framework like classical Bayesian methods. Many works
have been done in this field.

There are typically three different ways.

— Interpretation of kernel methods in Bayesian framework such as SVM and
other kernel methods in Bayesian framework as in [TO/S];

— Employing kernel methods in traditional Bayesian methods such as Gaussian
Processes and Laplacian Processes [16];

— Proposing new methods in Bayesian framework with kernel trick embedded
such as Relevance Vector Machine (RVM) [17] and Bayes Point Machine [9].

And we intend to embed kernel trick into Gaussian Mixture Model. This
work just belongs to the second category of Bayesian Kernel Method.

3 Kernel Trick Embedded GMM

As mentioned before, Gaussian Mixture Model can not obtain simple but satis-
fied results on data sets with complex structure, so we consider employing kernel
trick to realize a Bayesian Kernel version of GMM. Our basic idea is to embed
kernel trick into parameter estimation procedure of GMM. In this section, we
firstly describe GMM in feature space, secondly present the properties in feature
space, then formulate the Kernel Gaussian Mixture Model and the corresponding
parameter estimation algorithm, finally make some discussions on the algorithm.
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3.1 GMM in Feature Space

GMM in feature space by a map ¢(-) associated with kernel function k& can be
easily rewritten as

P6@)0) =Y @G0 7)

and the EM updating formula in (B) and (@) can be replaced by the following.

l NZ l|¢ (t 1))

() _ Loiey d@i)p( (i), 04~)
l S plllo(a:), ©1)

50 = SN (@) — Y (bs) — )T p(l]p (), ©0D)

SN, pllp(), 00-D) (8)

where [ represents the I** Gaussian component, and

oy o TGeE T

¢ (), 01 :
et S el VG g0y )

However, computing GMM directly with formula (§)) and (@) in a high dimen-
sion feature space is computationally expensive thus impractical. We consider
employing kernel trick to overcome this difficulty. In the following section, we
will give some properties based on Mercer kernel trick to estimate the GMM
parameters in feature space.

3.2 Properties in Feature Space

To be convenient, notations in feature space are given firstly, and then three
properties are presented.

Notations. In all the formulas, bold and capital letters are for matrixes, italic
and bold letters are for vectors, and italic and lower case are for scalars. Subscript
[ represents the I** Gaussian component, superscript ¢ represents the ¢ iteration
of the EM procedure. AT represents transpose of matrix A. Other notations are
shown in Table [l
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Table 1. Notation List

pl(f) = p(l|¢(x;), 0D) Posterior that ¢(z;) belongs to the I*" component.
wl(:) (p“)/zj 1 p;i)) (wl(f)) represents ratio that ¢(x;) is occupied by
the I*" Gaussian component.
= va_l ¢(wz)(wl(f)) Mean vector of the [** Gaussian component.
~l(t)(m,-) = p(x;) — ul(t) Centered image of ¢(z;).
Z’l(t) = Zi:l (ZS(ZEZ) ( )T (wff)) Covariance matrix of the [** Gaussian component.
(Kl(t))ij = ((w“qﬁ(xi) - wyj ¢(rj)) Kernel matrix
(th))i]- ((wllqg(:r@) . Q,Uljg%(xj)) Centered kernel matrix.
(th));], = ((¢(z:) - wi;o(z;)) Projecting kernel matrix.
(Rgt));] = (qg(ml) wmﬁ(a@)) Centered projecting kernel matrix.
/\Z(Z), Vl(et Eigenvalue and eigenvector of Elm.
/\l(z), l(é) Eigenvalue and eigenvector of I~{l(t)

Properties in Feature Space. According to Lemma 1 in Appendix, we can
get the first property.

[Property 1] Centered kernel matrix I~(l(t) and centered projecting kernel matrix
(I~(l(t))/ are computed from the following formulas:

Rl(t) _ Kl(t) . Wl(t)th) . Kl(t)wl(t) + Wl(t)Kl(t)Wl(t)
(K} = (") = (WK = ()W (Wi RIW(10)

where Wl(t) = wl(t) (wl(t)) (W(t)) 1N(wl(t))T, wl(t) = [wl(f), e wl(]t\),} , and
1y is a N-dimensional column vector with all entries equal to 1.

This property presents the way to center the kernel matrix and the projecting
kernel matrix. According to Lemma 2 in Appendix and Property 1, we can obtain
the second property.

[Property 2] Feature space covariance matrix El(t) and centered kernel matrix

Kl(t) have the same nonzero eigenvalues, and the following equivalence relation
holds.

Oy =\ v o KO = 5, a0 (11)

where Vl(et) and ﬁl(et) are eigenvectors of El(t) and I~(l(t) respectively.

This property enables us to compute eigenvectors from centered kernel matrix
instead of from feature space covariance matrix as in Equation (8.

With the first two properties, we do not need to compute the means and
covariance matrixes in feature space, but do the eigen-decomposition of centered
kernel matrix instead.
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Feature space has a very high dimensionality, which makes it intractable to
compute the complete Gaussian probability density G;(¢(x;)|6;) directly. How-
ever, Moghadam and Pentland’s work [22] bring us some motivation. It divides
the original high dimension space into two parts: the principal subspace and
the orthogonal complement subspace. The principal subspace has dimension d.
Thus the complete Gaussian density could be approximated by

« 1
G(¢($j)|9):—ex —= <
| | (2m)%/? f’l A2 ' [ 2 ; Alj

1 g2 Tj
X W exp [—(7>] (12)

where y, = qg(xj)TVle (here V. is the e-th eigenvector of X)), p is the weight
ratio, and €%(z;) is the residual reconstruction error.

At the right side of the Equation ([[Z), the first factor computes from the prin-
cipal subspace, and the second factor computes from the orthogonal complement
subspace.

The optimal value of p can be determined by minimizing a cost function. From
an information-theoretic point of view, the cost function should be the Kullback-
Leibler divergence between the true density Gi(¢(z;)|0;) and its approximation

Gi((x;)|60).

i),
0= [ Gl o) tos 5 30 do(e) (13)

Plugging (IZ)) into upper equation, it can easily shown that

1 N A
J(p) = = 2~ 1+10g 2]
(=5 D o~ 1 log -
e:d¢+1
Solving the equatlon = 0 yields the optimal value

p* =

Z Ale

e= d¢+1

And according to Property 2, X; and K, has same nonzero eigenvalues, by em-
ploying the property of symmetry matrix, we obtain

dg dg
1 2 1 ~ 12
pr= M{HEIHF—;M = M{IIKzHF—;AlE} (14)

where || - || is a Frobenius matrix norm defined as ||A||p = \/trace(AAT).
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- dg
The residual reconstruction error, %(z;) = ||¢(x;)||* — Y. y?2, could be easily
e=1

obtained by employing kernel trick

de
&% (x5) = k(wj, ) = > e (15)
e=1

And according to Lemma 3 in Appendix,

Ye = qg(mj)T‘/le = (‘/le . é(xj)) = ﬁTFl (16)

where I is the j-th column of centered projecting kernel matrix K;

It should notice here the centered kernel matrix K; is used to obtain eigen-
values A; and eigenvectors [3;, whereas projecting kernel matrix I~{; is used to
compute y. as in Equation (I6). And both these two matrixes cannot be omit-
ted in the training procedure.

Employing all these results, we obtain the third property.

[Property 3] The Gaussian probability density function G;(¢(z;)|6;) can be
approximated by Gy(é(x;)|6;) as shown in (I2), where p, e2(x;) and y. are
shown in (Id)), (IH) and (IG) respectively.

We should specially stress that the approximation of Gi(¢(x;)|0;) by
G’l(qﬁ(xj)wl) is complete since it represents not only the principle subspace but
also the orthogonal complement subspace.

According to these three properties, we can draw the following conclusions.

— Mercer kernel trick is introduced to indirectly compute dot products in the
high dimension feature space.

— The probability that a sample belongs to the I** component can be computed
through centered kernel matrix and centered projecting kernel matrix instead
of mean vector and covariance matrix as in traditional GMM.

— Needing not to obtain full eigen-decomposition of the centered kernel matrix,
we could approximate the Gaussian density with only the largest dg principal
components of the centered kernel matrix, and the approximation is not
dependent on dg very much since it is complete and optimal.

With these three properties, we can formulate our kernel Gaussian Mixture
Model.

3.3 Kernel GMM and the Parameter Estimation Algorithm

In feature space, the kernel matrixes replace the mean and covariance matrixes
in input space to represent the Gaussian component. So the parameters of each
component are not the mean vectors and covariance matrixes, but the kernel
matrixes. In fact, it is also intractable to compute mean vectors and covariance
matrixes in feature space because feature space has a quite high or even infinite



Kernel Trick Embedded Gaussian Mixture Model 167

dimension. Fortunately, with kernel trick embedded, computing on the kernel
matrix is quite feasible since the dimension of the principal subspace is bounded
by the data size N.

Consequently, the parameters that kernel GMM needs to estimate are the
prior probability ozl(t) ), centered projecting kernel
matrix (I~(l(t))/ and wl(t) (see Table[). That is to say, the M-components kernel
GMM is determined by parameters 6; = (al(t), wl(t), I~(l(t), (f{l(t))/), l=1,---, M.

According to the properties in previous sections, the EM algorithm for pa-
rameter estimation of kGMM could be summarized as in Table Pl. Assuming the
number of Gaussian components is M, we initialize the posterior probability p;;
that each sample belongs to some Gaussian component. The algorithm could
not be terminated until it converges or the presetting maximum iteration step
is reached.

, centered kernel matrix I~(l(t

Table 2. Parameter Estimation Algorithm for kGMM

Step 0. Initialize all pl(,?> =1+ ,M;i=1---,N), t =0, set tmaer and
stopping condition false.
Step 1. While stopping condition is false, t =t + 1, do Step 2-7.

Step 2. Compute oel(t), wfit), Wl(t), (Wlm)’, Kl(t) and (K;t))/ according to
notations in Table 1.

Step 8. Compute the matrixes I~(l(t>, (f(l(t))' via Property 1.

Step 4. Compute the largest dy eigenvalues and eigenvectors of centered
kernel matrixes K;t).

Step 5. Compute él(¢(mj)|01(t)) via Property 3.

Step 6. Compute all posterior probabilities pl(:) via (@)
Step 7. Test the stopping condition.

If t > tmax or Sy SO, (pl(:) —pl(f_l))2 < ¢, set stopping condition true,
otherwise loop back to Step 1.

3.4 Discussion of the Algorithm

Computational Cost and Speedup Techniques on Large Scale Problem.
By employing kernel trick, the computational cost of kernel eigen-decomposition
based methods is almost involved by the eigen-decomposition step. Therefore,
the computational cost mainly depends on the size of kernel matrix, i.e. the size
of data set. If the size N is not very large (e.g. N < 1,000), it is not a problem
to obtain full eigen-decomposition. If the size N is large enough, it is liable to
meet with the curse of dimension. As is known, if N > 5,000, it is impossible to
finish full eigen-decomposition even within hours on the fastest PCs currently.
However, the size N is usually very large in some problems such as data mining.

Fortunately, as we have pointed out in Section 3.2, we need not obtain the
full eigen-decomposition for components of kGMM, and we only need estimate
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the largest dy nonzero eigenvalues and corresponding eigenvectors. As for large
scale problem, we could make the assumption that dy < IN. Some techniques
can be adopted to estimate the largest ds components for kernel methods. The
first technique is based on traditional Orthogonal Iteration or Lanzcos Iteration.
The second is to make the kernel matrix sparse by sampling techniques [1]. The
third is to apply Nystrom method to speedup kernel machine [19].

However, these three techniques are a little complicated. In this paper, we
adopt another much simple but practical technique proposed by Taylor et.al [20].
It assumes that all samples forming kernel matrix of each component are drawn
from an underlying density p(x). And the problem could be written down as a
continue eigen-problem.

/ Kz, 9)p(x)Bi(@)dx = Nifi(y) (17)

where \;, B;(y) are eigenvalue and eigenvector, and k is a given kernel function.
The integral could be approximate using Monte Carlo method by a subset of
samples {z;}.", (m < N,m > dy) drawn according to p(z).

[ e p@itonds ~ 5 Y kg )Vites) (19

Plugging in y =z, for j = 1,--- , N, we obtain a matrix eigen-problem.

%Zj\; k(e er)Vile) = AiVilaw) (19)

where J\; is the approximation of eigenvalue J;.

This approximation approach has been proved feasible and has bounded er-
ror. We apply it to our parameter estimation algorithm on large scale problem
(N > 1,000). In our algorithm, the underlying density of component [ is ap-
proximated by Gl(¢(a:)|91(t)). We do sampling to obtain a subset with size m

according to él(qb(x)wl(t)), and perform full eigen-decomposition on such subset
to obtain the largest dy eigen-components.

With employing this Monte Carlo sampling technique, the computational
cost upon large scale problem could be reduced greatly. Furthermore, the mem-
ory needed by the parameter estimation algorithm also reduces greatly upon
large scale problem. These makes the proposed kGMM efficient and practical.

Comparison with Related Works. There are still some other work related
to ours. One major is the spectral clustering algorithm [21]. Spectral clustering
could be regarded as using RBF based kernel method to extract features and
then performing clustering by K-means. Compared with spectral clustering, the
proposed kGMM has at least two advantages. (1)kGMM can provide result in
probabilistic framework and can incorporate prior information easily. (2) kGMM
can be used in supervised learning problem as a density estimation method. All
these advantages encourage us to apply the proposed kGMM.
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Misunderstanding. We emphasize a misunderstanding of the proposed model.
Someone doubt that it can simply run GMM in the reduced dimension space
obtained by Kernel PCA to achieve the same result as kGMM. They say that
this just need project the data into the first dy dimension of the feature space
by Kernel PCA, and then perform GMM parameter estimation in that princi-
ple subspace. However, the choice of a proper d, is a critical problem so that
the performance will completely depend on the choice of dy. If dg is too large,
the estimation is not feasible because probability estimation demands that the
number of samples is large enough in comparison with dimension dg, and the
computational cost will increase greatly simultaneously. On the contrary, small
dg makes the estimated parameters not “well represent” the data.

The proposed kGMM does not have that problem since the approximated
density function is complete and optimal under the minimum Kullback-Leibler
divergence criteria. Moreover, kGMM can allow different component with dif-
ferent dg. All these improve the flexibility and expand the application of the
proposed kGMM.

4 Experiments

In this section, two experiments are performed to validate the proposed kGMM
compared with traditional GMM. Firstly kGMM is employed as unsupervised
learning or clustering method on synthetic data set. Secondly kGMM is em-
ployed as supervised density estimation method for real-world handwritten digit
recognition.

4.1 Synthetic Data Clustering Using Kernel GMM

To provide an intuitive comparison between the proposed kGMM and traditional
GMM, we first conduct experiments on synthetic 2-D data sets.

The data sets each with 1,000 samples are depicted in Figure[I] and Figure
For traditional GMM, all the samples are used to estimate the parameters of
two components mixture of Gaussian. When the algorithm stops, each sample
will belong to one of the components or clusters according to its posterior. The
clustering results of traditional GMM are shown in Figure and Figure
The results are obviously not satisfying.

However, by using kGMM with a polynomial kernel of degree 2, dy = 4
for each Gaussian component and the same clustering scheme as traditional
GMM, we achieve the promising results as shown in Figure[1(b)|and Figure R(b)l
Besides, kGMM provides probabilistic information as in Figure [1(c)| and Fig-
ure which cannot provide by most classical kernel methods.

4.2 USPS Data-Set Recognition Using Kernel GMM

Kernel GMM is also applied to a real-world problem, the US Postal Service
(USPS) handwritten digit recognition. The data set consists of 9,226 grayscale



170 J. Wang, J. Lee, and C. Zhang

-0.5 0 0.5

Fig. 2. Data set consists of 1,000 samples. Points marked by ‘x’ belong to one cluster
and marked by ‘-’ belong to the other. (a) is the partition result by traditional GMM;
(b) is the result achieved by kGMM; (c) shows the probability that each point belongs
to the left-right cluster. The whiter the point is, the higher the probability is.

images of size 16x16, divided into a training set of 7,219 images and a test set
of 2,007 images.

The original input data is just vector form of the digit image, i.e., the input
feature space is with dimensionality 256. Optionally, we can perform a linear
discriminant analysis (LDA) to reduce the dimensionality of feature space. If
LDA is performed, the feature space yields to be 39.

Each category w is estimated a density of p(z|w) using 4 components GMM
on training set. To classify an test sample x, we use the Bayesian decision rule

w*:argmgx{p(ﬂw)P(w)}, w=1,---,10 (20)

where P(w) is prior probability of category w. In this experiment, we set P(w) =
1/10. That is to say, all categories are with equal prior probability.

To be comparison, kGMM adopts the same experiment scheme as traditional
GMM except for using an RBF kernel function

k(z,2") = exp(—7llz — 2||*)

with v = 0.0015, Gaussian mixture component number of 2 and dy = 40 for
each Gaussian component.

The experiment results of GMM in original input space, GMM in the space
by LDA (from [4]) and kGMM are shown in Table Bl We can see that kGMM,
with less components number, has obviously much better performance than tra-
ditional GMM with or without LDA. Although, the result by kGMM is not the
state-of-art result on USPS, we still can improve the result by incorporating
invariance prior knowledge using Tangent distance as in [4].
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Table 3. Comparison results on USPS data set

Method Best Error rate
GMM 8.0%
LDA+GMM 6.7%
Kernel GMM 4.3%

5 Conclusion

In this paper, we present a kernel Gaussian Mixture Model, and deduce a pa-
rameter estimation algorithm by embedding kernel trick into EM algorithm.
Furthermore, we adopt a Monte Carlo sampling technique to speedup kGMM
upon large scale problem, thus make it more practical and efficient.

Compared with most classical kernel methods, kGMM can solve problems
in a probabilistic framework. Moreover, it can tackle nonlinear problems better
than the traditional GMM. Experimental results on synthetic and real-world
data set show that the proposed approach has satisfied performance.

Our future work will focus on incorporating prior knowledge such as invari-
ance in kGMM and enriching its applications.

Acknowledgements. The author would like to thank anonymous reviewers for
their helpful comments, also thank Jason Xu for helpful conversations about this
work.
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Appendix

To be convenient, the subscripts representing Gaussian components and the
superscripts representing iterations are omitted in this part.

[Lemma 1] Suppose ¢(-) is a mapping function that satisfies Mercer conditions
as in Equation (1)(Section 2) with N training samples X = {xz}fvzl w is a
N-dimensional column vector with w = [wy,--- ,wy]T € RV,

Let’s define pu = Zfil o(x)w? and @(z;) = d(z;) — p

Then the following consequences hold true:

(1) If K is a N x N kernel matrix such that K;; = (w;d(z;) - wjo(z;)),
and K isa N x N matrix, which is centered in the feature space, such that
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Ki; = (w;(z;) - wj¢(x;)), then we can get:

K=K - WK - KW + WKW (al)

where W = ww?.
(2) If K is a N x N projecting kernel matrix such that K, = (¢(z;) -
quﬁ(xj)), and K’ is a N x N matrix, which is centered in the feature space,

such that Rij = ((5(.1‘1) -qug(xj)), then

K =K - WK - KW+ WKW (a2)

where W/ = 1yw”, 1y is a N-dimensional column vector that all entries equal
to 1.

Proof: (1)
Kij = (wid(a:) - w;é(z;))
= wip(z:) wip(x;)
N N
= (wl(gi)(a:l) — Z(b(xk)wz) w; Z¢ xk wk
k=1 k=1

= (wip(@:)Tw;p(x5)) — wi > wr (wid(ar) wid(;))

N N N
— Z W (w¢¢(m¢)ka¢(wk)) Wj + w; Z Z Wk Wn (wk¢($k)Twn¢($n))
k=1 k=1n=1
N
=Kij —wi Z we K — Z weKirw; + w; Z Z wiwn (wed(xr)  Wnd(Tn))w;
k=1 = k=1n=1

then we can get the more compact expression as (&ll).
Similarly, we can prove (2).

[Lemma 2] Suppose X' is a covariance matrix such that

=" b w? (a3)
Then the following would be hold
(1) XV =V <:)~Kﬂ = \5.
(2) V=301, Bidlzi)w;

Proof:

(1) Firstly, we prove ” = 7.

If XYV = AV, then the solution V lies in space spanned by
wip(x1), - ,wyd(xy), and we have two useful consequences: firstly, we can

consider the equivalent equation

)\(wké(mk) . V) = (wkqg(xk) . EV), foralk=1,--- N (ad)
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and secondly, there exist coefficients 8; (i =1,---,N) such that

V= Zil @wzéf;(%)

Combining (a4) and (ab), we get

N
AZ@ wi(zx) - wid(x;)) Zﬁz(wm wr) -y wid(x;) (widlay) - w;
j=1

i=1 i=1

then this can read

AK3 = K23

(a5)

Qg(wi)))

where 3 = [y, , Bn]T. K is a symmetric matrix, which has a set of eigenvec-

tors which span the whole space, thus

N3 =Kp

Similarly, we can prove ” < 7.
(2) is easy to prove, so the proof is omitted.

[Lemma 3] If z € R% is a sample, with ¢(z) = ¢(x) — x, then

(V-6(a) = 3, Bulwid(as) - da)) = BT

where I is j-th column of centered projecting matrix K'.
Proof:
This Lemma follows from (a5).

(a6)
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